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Abstract-The Crypto Co-processor System Design is increasing the number of AES Encryption only.  At a 

system frequency of 400 MHz, increasing the number of AES Encryption from one to two and then to four 

Modules. Note that at system frequency of 400 MHz, one, two, four lanes AES Modules are running at 400 

MHz, 200 MHz,  respectively, and the other parts of the crypto coprocessor are running at 400 MHz. Obviously, 

the consumed area increases with increasing the number of AES Modules with increasing the SDQ depth for 

each individual curve. More power consumption perspective, the use of AES Encryption pipelines running at 50 

MHz results in lower power consumption than two parallel pipelines running at 100 MHz, or one pipeline 

running at 200 MHz. For more clarity, when the AES pipelines operating frequency is 50 MHz, the effect of 

increasing the number of parallel lanes on the overall performance of Crypto is dramatically large Moreover, the 

Crypto throughput when the input data varies from 8 to 3072 blocks. A huge improvement in throughput with 

increasing the parallel pipelines at constant AES pipelines frequency, where all AES pipelines run at 50 MHz. 

Keywords: AES Pipelines, Cryptography, Parallel processing. 
 

1. INTRODUCTION 
 

In cryptography, encryption is the process of transforming information(plaintext) using an algorithm (cipher) to 

make it unreadable to anyone except those possessing special knowledge(key). The result of the process is 

encrypted information (ciphertext).Decryption refers to the reverse process to make the encrypted information 

readable again (converts the cipher text to plaintext using an algorithm called decipher). Encryption has long 

been used by militaries and governments to facilitate secret communication. However, it is now commonly used 

in protecting information within many kinds of civilian systems to protect data in transit or in storage. Thus, 

cryptographic processing has been brought to the forefront of system design. Nowadays, the most important 

cryptographic algorithm is the Advance Standard Algorithm (AES).AES algorithm is a computationally 

intensive application based on data-level parallelism (DLP), where the same set of operations are repeated over 

streams of input data. Among the various forms of parallelism (instruction-level parallelism (ILP), thread-level 

parallelism (TLP), and DLP) the cheapest and the most prevalent form of parallelism available in many 

applications is DLP .Exploiting DLP existed in AES algorithm is the key to achieving high throughput by 

executing multiple, independent operations concurrently. 
 

2. REVIEW OF RELATED WORK 
 

Since AES was accepted as a FIPS (Federal InformationProcessingStandards), it became one of the most 

important cryptographicalgorithms till today. It received a lot of researchers’ attention.Thus, there are various 

forms for implementing this cryptographicalgorithm on software and hardware. Even though the AES 

algorithmcan be programmed on general-purpose processors (GPP),its performance is not acceptable to many 

cryptographic applications.On the other hand, hardware implementations give higherperformances than 

software; however, they represent special purposehardware. There have been many different hardware 

implementationsfor ASIC (Application Specific Integrated Circuits) andFPGA to improve the throughput of the 

AES algorithm. 

On a single-chip FPGA (Xilinx Virtex-E), McLoone and Mc-Canny [17] described implementations of AES 

algorithm. Theypresented generic, parameterizableRijndaelencryptor core capableof supporting varying key 

sizes. A pipelined single-chip 128-bit key Rijndaelencryptor/decryptor core achieved a data rate of3.2 Gb/s on a 

system clock of 25.3 MHz.Jrvinen et al. [11] implementeda pipelined AES-128 encryption algorithm on 

XilinxVirtex-II devices. They implemented the Sboxes combinational,where no internal memory was required. 

They achieved a throughputof 17.8 Gb/s at 139.1 MHz.Standaert et al. [27] implementeda pipeline version that 

unrolls the ten AES rounds on FPGA (XilinxVirtex-E) and achieved up to 18.125 Gb/s at 145 MHz.Hodjat 

andVerbauwhede [7] presented a fully pipelined AES encryption processoron a single-chip FPGA (VirtexII-

Pro). By using loop unrolling.and inner-round and outer-round pipelining techniques, a maximumthroughput of 

21.54 Gb/s was achieved at 168.3 MHz and apipeline latency of 31 cycles. Qin et al. [20] used the Altera 
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StratixFPGA to implement the AES encryption circuit. The unrolling implementationachieved a throughput of 

20.48 Gb/s at 160.05 MHz. 

Wu et al. [31] have designed CryptoManiac, which is acryptographic coprocessor based on VLIW (Very Long 

InstructionWord) to execute up to four instruction per cycle. Additionally,short latency instructions (e.g. bitwise 

logical and arithmeticinstructions) can be combined to be executed in a single cycle.CryptoManiac was designed 

to run at clock rate 360 MHz achievingthroughput equal to 500 Mb/s. Oliva et al. [19] described aprogrammable 

processor called CRYPTONITE tailored to the needsof crypto algorithms. The CRYPTONITE crypto-processor 

is a VLIWarchitecture with two 64-bit datapaths, which was designed to runat clock rate 400 MHz and 

providing a throughput of 700 Mb/s. 
 

3. AES ENCRYPTION ARCHITECTURE                                                         
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Fig. 3.1 AES Encryption Architecture 
 

AES is a symmetric block cipher. This means that it uses the same keyfor both encryption and decryption. 

However, AES is quite different from DES in a number of ways. The algorithm Rijndael allows for a variety of 

block and key sizes and not just the 64 and 56 bits of DES’ block and key size. The block and key can in fact be 
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chosen independently from 128, 160, 192, 224, 256 bits and need not be the same. However, the AES standard 

states that the algorithm can only accept a block size of 128 bits and a choice of three keys - 128, 192, 256 bits. 

Depending on which version is used, the name of the standard    is modified to AES-128, AES-192 or AES-256 

respectively. As well as these differences AES differs from DES in that it is not a feistel structure. Recall that in 

a feistel structure, half of the data block is used to modify the other half of the data block and then the halves are 

wapped. In this case the entire data block is processed in parallel during each round using substitutions and 

permutations. A number of AES parameters depend on the key length. For example, if the key size used is 128 

then the number of rounds is 10 whereas it is 12 and 14 for 192 and 256 bits respectively. At present the most 

common key size likely to be used is the128 bit key. 

3.1 Inner Workings of a Round 
 

The algorithm begins with an Add round key stage followed by 9 rounds of four stages and a tenth round of 

three stages. This applies for both encryption and decryption with the exception that each stage of a round the 

decryption algorithm is the inverse of it’s counterpart in the encryption algorithm.  

The four stages are as follows: 

 Substitute bytes 

 Shift rows 

 Mix Columns 

 Add Round Key 
 

3.1.1 Substitute Bytes 
 

This stage known as SubBytes is simply a table lookup using a 16×16 matrix of byte values called an s-box. 

This matrix consists of all the possible combinations of an 8 bit sequence (28 = 16 × 16 = 256). However, the s-

box is not just a random permutationof these values and there is a well defined method for creating the s-box 

tables. The designers of Rijndael showed how this was done unlike the s-boxes in DES for which no rationale 

was given. We will not be too concerned here how the s-boxes are made up and can simply take them as table 

lookups.Again the matrix that gets operated upon throughout the encryption is known as state. 

It will be concerned with how this matrix is affected in each round. 
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Fig. 3.2(a) Input, State Array and Output 
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Fig. 3.2(b) Data Structures in the AES Algorithm. 
 

Round each byte is mapped into a new byte in the following way: the left most nibble of the byte is used to 

specify a particular row of the s-box and the rightmost nibble specifies a column. For example, the byte {95} 

(curly brackets represent hex values in FIPS PUB 197) selects row 9 column 5 which turns out to contain the 

value {2A}. This is then used to update the state matrix.  

The second basic cryptographic primitive is the random generator, also known as a keystream generator or 

stream cipher. This is also a random function, but unlike in the hash function case it has a short input and a long 

output. If we had a good pseudorandom function whose input and output were a billion bits long, and we never 

wanted to handle any objects larger than this, we could turn it into a hash function by throwing away all but a 

few hundred bits of the output, and a stream cipher by padding all but a few hundred bits of the input with a 

constant.  
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Fig. 3.3 Substitute Bytes Stage of the AES algorithm 
 

The s-box is designed to be resistant to known cryptanalytic attacks. Specifically, the Rijndael developers 

sought a design that has a low correlation between input bits and output bits, and the property that the output 

cannot be described as a simple mathematical function of the input. In addition, the s-box has no fixed points (s-

box(a) = a) and  opposite fixed points (s-box(a) =−a) where −a is the bitwise compliment of a. Thes-box must be 

invertible if decryption is to be possible (Is-box[s-box(a)]= a) however it should not be its self inverse i.e. s-

box(a) 6= Is-box(a) Figure 

The second basic cryptographic primitive is the random generator, also known as a keystream generator or 

stream cipher. This is also a random function, but unlike in the hash function case it has a short input and a long 

output. If we had a good pseudorandom function whose input and output were a billion bits long, and we never 

wanted to handle any objects larger than this, we could turn it into a hash function by throwing away all but a 

few hundred bits of the output, and a stream cipher by padding all but a few hundred bits of the input with a 

constant.  
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 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76 

1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0 

2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15 

3 04 C7 23 C3 18 96 05 9A 07 12 80 F2 EB 27 B2 75 

4 09 83 2C IA IB 6E 5A A0 52 3B D6 B3 29 E3 2F 84 

5 D0 D1 00 FF 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF 

6 51 EF AA F3 43 4D 33 85 45 F9 02 7F 50 3C 9F A8 

7 CD A3 40 67 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2 
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Table-3.2 Inverse S- Box 
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1 76 72 A4 9C AF D4 47 AD F0 47 59 FA 7D C9 82 CA 

2 C0 31 D8 71 F1 A5 F7 34 CC F7 3F 36 26 93 FD B7 

3 15 B2 27 EB F2 12 05 07 9A 05 96 18 C3 23 C7 04 

4 75 2F E3 29 B3 3B 5A 52 A0 5A 6E IB IA 2C 83 09 

5 84 58 4C 4A 39 CB B1 6A 5B B1 FC 20 FF 00 D1 D0 

6 CF 9F 3C 50 7F F9 33 45 85 33 4D 43 F3 AA EF 51 

7 A8 F3 FF 10 21 B6 38 BC F5 38 9D 92 67 40 A3 CD 

8 D2 19 5D 64 3D A7 44 C4 17 44 97 5F DD 13 0C 60 

9 73 OB 5E DE 14 EE 90 46 88 90 2A 22 A1 4F 81 E0 

A DB E4 95 91 62 D3 24 C2 5C 24 06 49 77 3A 32 E7 
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F DF BB 54 B0 0F 99 42 41 68 42 E6 BF OD 89 A1 8C 

 

3.1.2 Shift Row Transformation 
 

This stage (known as ShiftRows) is shown in fig. 3.3. This is a simple permutation 

an nothing more. It works as follow: 

 The first row of state is not altered. 

 The second row is shifted 1 bytes to the left in a circular manner. 

 The third row is shifted 2 bytes to the left in a circular manner. 

 The fourth row is shifted 3 bytes to the left in a circular manner. 

 

 

 

    

 

    

 

    

 

 
 

Fig.3.3 Shift Rows Stage 
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3.1.3 Mix Column Transformation 
 

This stage (known as MixColumn) is basically a substitution but it makes use of arithmeticof GF(28). Each 

column is operated on individually. Each byte of a column is mapped into a new value that is a function of all 

four bytes in the column. The transformation can be determined by the following matrix multiplication on state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.4 Mix Columns Stage 
 

As an example, let’s take the first column of a matrix to be s0,0 = {87}, s1,0 ={6E}, s2,0 = {46}, s3,0 = {A6}. 

This would mean that s0,0 = {87} gets mapped to the value s00,0 = {47} which can be seen by working out the 

first line of equation3.2 with j = 0. Therefore we have:(02 • 87) _ (03 • 6E) _ 46 _ A6 = 47 
 

3.1.4 Add Round Key Transformation 
 

In this stage (known as addRoundKey) the 128 bits of state are bitwise XORed with the 128 bits of the round 

key. The operation is viewed as a column wise operation between the 4 bytes of a state column and one word of 

the round key. This transformation is as simple as possible which helps in efficiency but it also effects every bit 

of state. 
 

3.2 AES Key Expansion 
 

The AES key expansion algorithm takes as input a 4-word key and produces a linear array of 44 words. Each 

round uses 4 of these words as shown in figure 3.2. Each word contains 32 bytes which means each subkey is 

128 bits long. The program shows the pseudocode for generating the expanded key from the actual key. 

Key Expansion (byte key[16], word w[44]) 
 

{ 

 Word temp 

 For (i=0;i<4;i++)    w[i]=(key[4*i],key[4*i+1], key[4*i+2], key[4*i+3]); 

 For (i=4; i<44;i++) 

 { 

 Temp=w[i]; 

 If(I mod 4 =0) temp=Sub word (RotWord(temp))+Rcon[i/4]; 

 W[i]=w[1-4]+temp; 

 } 

} 
 

The program explains the expand key. First it declare size of key and word size, secondly it declare temp 

function and usinf loop key for compare and rotate, if condition is satisfied sub word compare wit XOR function 

and decrease the i value this process will contine till compare with sub word after the key expanded.The key is 

copied into the first four words of the expanded key. The remainder of theexpanded key is filled in four words at 

a time. Each added word w[i] depends on theimmediately preceding word, w[i − 1], and the word four positions 

back w[i − 4]. Inthree out of four cases, a simple XOR is used. For a word whose position in the warray is a 

multiple of 4, a more complex function is used. The function g consists of the following sub functions: 

 RotWordperforms a one-byte circular left shift on a word. This means that aninput word [b0, b1, b2, 

b3] is transformed into [b1, b2, b3, b0]. 

 SubWordperforms a byte substitution on each byte of its input word, using thes-box described earlier. 

 The result of steps 1 and 2 is XORed with round constant, Rcon[j].The round constant is a word in 

which the three rightmost bytes are always 0. Thus theeffect of an XOR of a word with Rcon is to only 

perform an XOR on the leftmost byteof the word. The round constant is different for each round and is 

defined as Rcon[j] =(RC[J], 0,0,0), with RC[1]= 1, RC[j]= 2• RC[j −1] and with multiplication 

definedover the field GF(28). 
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The key expansion was designed to be resistant to known cryptanalytic attacks. Theinclusion of a round-

dependent round constant eliminates the symmetry, or similarity,between the way in which round keys are 

generated in different rounds. The second basic cryptographic primitive is the random generator, also known as 

a keystream generator or stream cipher. This is also a random function, but unlike in the hash function case it 

has a short input and a long output. If we had a good pseudorandom function whose input and output were a 

billion bits long, and we never wanted to handle any objects larger than this, we could turn it into a hash 

function by throwing away all but a few hundred bits of the output, and a stream cipher by padding all but a few 

hundred bits of the input with a constant.  

The throughput-area trade-off when the number of stages per one round is changed from one to four. The 

throughput and area are measured in Giga bits per second (Gb/s) and in  slices, respectively. The results show 

that as the number of stages increases, the area (cost) increases. However, the throughput is saturated when the 

number of stages is greater than one (two or more stages). In the unrolled AES pipeline, the implementation of 

the outer pipeline (one pipeline stage per round) achieves a throughput  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.5 AES Key Expansion 

Fig. 3.5 give a summary of each of the rounds. The ShiftRows column is depictedhere as a linear shift which 

gives a better idea how this section helps in the encryption.The AES algorithm has 10 rounds,where each round 

could be pipelined with different number of stages. The throughput-area trade-off when the number of stages per 

one round is changed from one to four. The throughput and area are measured in Giga bits per second (Gb/s) 

and in slices, respectively.Our results show that as the number of stages increases, the area (cost) increases. 

However, the throughput is saturated whenthe number of stages is greater than one (two or more stages). In the 

unrolled AES pipeline, the implementation of the outer pipeline (one pipeline stage per round) achieves a 

throughput of 45 Gb/s at frequency 360 MHz on Xilinx Virtex V. Since the look-up tables of Sbox are the main 

critical path in the AES pipeline design,the implementation of the inner pipeline with two, three, or four stages 

achieves 70 Gb/s at maximum frequency of 557 MHz. From area consumption point of view, one stage per 

round consumed17% of the FPGA slices, which results in a throughput of 45 Gb/s. The area increases to 23%, 

27% and 35% when two, three, and four stages per round are used, respectively, where the throughput remains 

constant at 70 Gb/s. From this discussion, two stages per round is the best choice for implementation because it 

gives the best throughput-area trade-off. 
 

3.3 Parallel AES  Pipelines 
 

This section analyzes the effect of increasing the number of parallel AES pipelines on the overall performance 

of Fast Crypto. At a system frequency of 200 MHz, increasing the number of parallel AES pipelines from one to 

two and then to four pipelines. Note that at system frequency of 200 MHz, one, two, four lanes (AES pipelines) 

are running at 200 MHz, 100 MHz, and 50 MHz, respectively, and the other parts of the crypto coprocessor are 

running at 200 MHz. Obviously, the consumed area increases with increasing the number of parallel pipelines, 

and with increasing the SDQ depth for each individual curve. However, from power consumption perspective, 

the use of four parallel pipelines running at 50 MHz results in lower power consumption than two parallel 

pipelines running at 100 MHz, or one pipeline running at 200 MHz . 
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For more clarity, when the AES pipelines operating frequency is 50 MHz, the effect of increasing the number of 

parallel lanes on the overall performance of Crypto is dramatically large Moreover, the Crypto throughput when 

the input data varies from 8 to 3072 blocks. A huge improvement in throughput with increasing the parallel 

pipelines at constant AES pipelines frequency, where all AES pipelines run at 50 MHz. 

The prime numbers are the positive whole numbers with no proper divisors; that is, the only numbers that divide 

a prime number are 1 and the number itself. By definition, 1 is not prime; so the primes are {2, 3, 5, 7, 11, ...}. 

The fundamental theorem of arithmetic states that each natural number greater than 1 factors into prime 

numbers in a way that is unique up to the order of the factors. It is easy to find prime numbers and multiply 

them together to give a composite number, but much harder to resolve a composite number into its factors. The 

largest composite product of two large random primes to have been factorized to date was 512 bits 155 digits 

long; when such a computation was first done, it took several thousand MIPS-years of effort. Recently, 

however, some Swedish students managed to factor a 512-bit number surreptitiously to solve a challenge cipher, 

so 512-bit composite numbers are now no more ‘secure’ than 56-bit DES keys. However, it is believed that a 

similar number of 1024 bits length could not be factored without an advance in mathematics. 

The algorithm commonly used to do public key encryption and digital signatures based on factoring is RSA, 

named after its inventors Ron Rivest, Adi Shamir, and LenAdleman [649]. It uses Fermat’s little theorem, which 

states that for all primes p not dividing a, a p–1 ≡1 modulo p. (Proof: take the set {1, 2, .... p – 1} and multiply 

each of them modulo p by a, then cancel out (p – 1)! each side.) Euler’s function φ (n) is the number of positive 

integers less than n with which it has no divisor in common; so if n isthe product of two primes pq then φ(n) = 

(p – 1) (q – 1) (the proof is similar).The encryption key is a modulus N which is hard to factor (take N = pq for 

two large randomly chosen primes p and q), plus a public exponent e that has no common factors with either p – 

1 or q – 1. The private key is the factors p and q, which are kept secret. Where M isthe message and C is the 

ciphertext, encryption is defined by: 

                 C ≡ M e modulo N 
 

CONCLUSION  
 

In this project describes implementation of Crypto Co processor using AES. Crypto extends a general-purpose 

processor with an AES, crypto coprocessor for encrypting data with high throughput. The crypto coprocessor 

includes parallel AES pipelines with high performance encryption. Moreover, the use of parallel AES pipelines 

at low frequency reduces the power consumption and provides a scalable system. This article presented a fast 

and efficient AES cryptography hardware structure that can find many applications. The circuit implementation 

is very efficient and can be customized to a wide range of applications. The pipelining can be used in faster 

devices and buses. It represents an improvement over the non-pipeline version and can support many new 

applications. 
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